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AnyoneCue: Gloss-Prompted Fine-grained and Personalized Cued
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Abstract—Cued Speech (CS) is a visual coding system, which
combines lip-reading with several specific hand codings to help
hearing-impaired people to communicate effectively. Generating
CS videos from audio speech and text can significantly improve
accessibility and communication for individuals with hearing
impairments. However, existing video generation methods pri-
marily concentrate on general gestures, such as human walking,
and hence are not directly suitable for generating CS videos.
Moreover, current approaches struggle to produce realistic, fine-
grained, personalized videos adhering to specific CS coding rules.
To address these challenges, firstly, we propose a Gloss-based
Diffusion Pose Generation Model (GlossDiff), where the gloss
is a novel CS motion parsing prompt to integrate additional
linguistic rules knowledge into the CS pose generation model.
The glosses are automatically generated descriptive texts based on
Large Language Models (LLMs) to establish a direct and delicate
semantic connection between CS gestures and spoken language.
Secondly, a Pose-Refined Video Diffusion Model (PRV-DM) is
proposed to leverage the generated pose sequences to produce
fine-grained and personalized CS videos. Specifically, to address
the critical challenges of pose scale mismatches with personalized
references, ambiguous lip shape, and hand deformations in
generated videos, we introduce a Multi-faceted Pose-Refined
Module (MFPR) that contains pose alignment, lip enhancement
and hand refinement stages. Furthermore, we record and publish
the largest Mandarin Chinese CS dataset (named MCCS-2024),
containing seven Chinese CS cuers. Extensive experiments and
user studies demonstrate the effectiveness of our method, making
it the first diffusion model based approach for generating fine-
grained and personalized CS videos. The code and dataset
with multi-modal annotations were made public at https://mccs-
2024.github.io/.

Index Terms—Cued Speech Video Generation, Human-
Computer Interaction for Hearing-Impaired, CS Gloss, Diffusion
Model.

I. INTRODUCTION

According to the World Health Organization (WHO), over
5% of the world’s population, approximately 466 million
people, experience hearing loss. Lip-reading, a primary com-
munication method for individuals with hearing impairments,
faces significant challenges due to visual ambiguity [1], [2].
For example, it often fails to distinguish between phonemes
with similar lip movements, e.g., [u] and [y], creating barriers
for hearing-impaired individuals in accessing spoken language
through traditional educational methods.

To address the shortcomings of lip-reading and enhance
the literacy skills of those with hearing impairments, Cornett
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Fig. 1. The encoding rule for Mandarin Chinese Cued Speech (figure from
[3]), which utilizes five separate hand positions to represent vowels and eight
hand configurations to represent consonants.

developed the Cued Speech (CS) system in 1967 [4]. This
system enhances lip-reading by incorporating hand gestures,
including specific finger shapes and hand positions, to provide
a precise visual representation of all phonemes in spoken
language [1], [2]. For instance, in Mandarin Chinese CS
(MCCS) [5] (see Fig. 1), five hand positions are used to encode
vowel groups, while eight finger shapes represent consonant
groups. By integrating hand cues, CS enables individuals with
hearing impairments to distinguish sounds that may appear
identical on the lips. It is important to note that while Sign
Language (SL) is another widely used communication method
[6]–[8], CS differs fundamentally as it is not a visual language
but rather a coding system for spoken language [4]. Research
has shown that CS can be learned more rapidly than SL [9].
Furthermore, compared to written text, CS is more accessible
and easier to adopt for hearing-impaired individuals who may
lack literacy skills [10], [11].

Recently, the automatic conversion between multi-modal
CS video (i.e., face, lip-reading, hand shape, and hand po-
sition movements) and text/audio speech attracts researchers’
attention [12]–[14]. It includes CS video-to-text/audio (see
direction 1 in Fig. 2) and the inverse text and audio speech to
CS video generation (see direction 2 in Fig. 2). This automatic
conversion of the CS system can significantly improve the
communication efficiency between the hearing-impaired and
hearing-impaired/normal hearing. Even though this research
topic has been studied for a long time, most of the works
focused on the direction 1 (i.e., French/British CS video-to-
text recognition), while the multi-modal CS video generation
is under-explored because of the following reasons: 1) high
requirement for fine-grained CS video generation, as shown
in Fig. 3(a), where nuances in the hand’s position and hand
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Fig. 2. The overall framework of the conversion between CS and text/speech. Direction 1 means CS to text/speech generation, and direction 2 means
text/speech to CS gesture generation. The first direction aims to synthesize text or speech to make normal hearing better understand the hearing-impaired
people, and the second direction can help the hearing-impaired to visually understand normal-hearing people. This work focuses on the multi-modal CS
video generation based on the audio speech and text (i.e., Direction 2).

shape lead to quite different semantic meanings. The limited
size of CS datasets and the high annotation cost of complex
fine-grained CS gestures make it very challenging. 2) When
generating the CS video, existing models produce unclear lip
movements, leading to poor expressiveness in lip-reading (see
Fig. 3(b)). 3) In the process of generating personalized CS
videos, where a personalized reference image controls the
character’s appearance, there are issues due to the mismatch
between the scale of the generated human pose1 and the size
of the given personalized reference image. This mismatch
leads to distortions in the facial appearance. Moreover, rapid
movements and transformations of the hands result in the
generated hand fingers being severely deformed (see examples
in Fig. 3(c)).

Fig. 3. Three typical challenges in the automatic CS video generation.

To address these challenges, we propose AnyoneCue, the
first speech and text-driven diffusion-based framework (see
Fig. 4) for generating fine-grained and personalized CS videos.
To overcome the first challenge mentioned above, a novel CS

1Pose means the keypoints sequence of lip and hand in CS videos.

gloss, which is a direct CS motion instruction to bridge the gap
between spoken language and CS gestures, is first proposed.
The gloss (i.e., intermediate instruction text) describes the
process of using CS gestures to express the text phonetically.
On this basis, a Gloss-based Diffusion model (GlossDiff) is
proposed to produce the CS pose sequence, which can be used
to generate fine-grained CS video. The gloss is used as an
effective prompt for the GlossDiff.

Furthermore, rhythm plays a crucial role as paralinguistic
information in spoken language. We argue that, as a coding
system for spoken languages, CS also requires consideration of
natural rhythmic dynamics for complete semantic expression.
Here, rhythm specifically refers to the generation of syn-
chronized multi-modal CS gesture movements (i.e., hand and
finger movements) that align with the phoneme durations and
utterance prosody of the speech signal. Notably, prior research
has largely overlooked this important aspect. To address this,
we introduce an Audio-driven Rhythmic Module (ARM) de-
signed to ensure that CS movements are rhythmically aligned
with corresponding speech signals.

Lastly, the CS poses generated by GlossDiff are used to
generate the CS video. When generating personalized CS
videos, where a personalized reference image controls the
character’s appearance, there are issues due to the mismatch
between the scale of the generated human pose and the size
of the given personalized reference image. This mismatch
leads to distortions in the facial appearance. Moreover, in
this process, existing models suffer from issues like lip shape
ambiguity and hand deformation (as mentioned in Fig. 3 (b)
and (c)). To tackle the above problems (i.e., the second and the
third challenges shown in Fig. 3), we design a Pose-Refined
Video Diffusion Module (PRV-DM), which includes three-
faceted processing: pose alignment between the generated
pose and given reference image, lip enhancement and hand
refinement.

In summary, the main contributions of this work are as
follows:

• We introduce AnyoneCue, the first framework for gener-
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ating fine-grained and personalized CS videos driven by
audio speech and text.

• We propose a GlossDiff that generates fine-grained CS
pose sequences (hand position, shape, and lip movements)
by introducing a CS gloss to link text/speech with precise
hand and lip motions. In addition, a rhythm-aware mech-
anism ensures pose alignment with audio speech signals.

• We develop a PRV-DM to produce high-quality CS
videos, effectively tackling three key challenges: incon-
sistent pose scaling relative to the reference image, lip
shape ambiguity, and hand deformations.

• We establish and release the MCCS-2024, the largest
Chinese CS dataset with seven CS cuers. Extensive exper-
iments demonstrate state-of-the-art (SOTA) performance,
supported by qualitative, ablation, and user studies.

Note that this work is an extension of our previous con-
ference paper presented at the IJCAI2 2024 [15] (7 pages),
which introduced a diffusion-based framework for fine-grained
CS pose generation. In contrast to the prior work, which
focused solely on CS pose generation, this study advances
the field by addressing the more challenging task of CS video
generation. The key improvements of this work include: (i)
a PRV-DM that generates high-quality CS videos from pose
sequences, ensuring fine-grained and personalized outputs;
(ii) a Multi-faceted Pose-Refined Module (MFPR) designed
to tackle the challenges of CS video generation by refining
pose alignment, enhancing lip synchronization, and correcting
hand deformations, significantly improving video quality; and
(iii) the introduction of the MCCS-2024 dataset, the largest
Mandarin Chinese CS dataset to date, which expands the
number of cuers from 4 to 7, including one hearing-impaired
cuer, providing a more diverse and robust foundation for
training and evaluation. Together, these advancements enable
AnyoneCue to produce realistic and accurate CS videos,
significantly enhancing communication accessibility for the
hearing-impaired community.

II. RELATED WORK

A. Automatic Cued Speech Generation

In previous studies, prior work in generation of CS ges-
tures [16], [17] primarily relied on rule-based methods. For
example, in [16], researchers manually selected specific key-
words and used low-context sentences [18], while predefined
templates were created for corresponding hand gestures. This
approach involved recognizing CS content and then mapping
the recognized text to predefined hand gesture templates. How-
ever, this method was heavily dependent on manual design,
which limited the expressiveness of CS gestures and required
significant human effort. In [17], a post-processing algorithm
was proposed to enhance synthesized hand gestures by adjust-
ing hand rotation and translation. Despite this improvement,
the method still required prior human knowledge to adapt
the algorithm to new images, leading to limited robustness.
More recently, in [19], a pre-trained audiovisual text-to-speech
model was employed to generate hand and lip poses for CS.

2International Joint Conferences on Artificial Intelligence (IJCAI)

This approach, based on a Bi-LSTM architecture, focused on
generating individual hand and lip poses using a non-public
French CS dataset rather than addressing the complete task of
CS video generation. To the best of our knowledge, there
remains a gap in research on diffusion model-based CS
gesture and video generation.

B. Co-speech and Sign Language Generation

Co-speech gesture generation involves creating body move-
ments that align with audio speech input, a technique widely
applied in virtual character animation, particularly for vir-
tual speaking and advertising. Our focus here is on deep
learning-based approaches for co-speech gesture generation.
Earlier research primarily focused on developing large-scale
speech-gesture datasets to learn the mapping between audio
speech and human skeletal movements using deep learning
techniques, as seen in [20]. To enhance the expressiveness
of gestures, some methods employ Generative Adversarial
Networks (GANs) to achieve more realistic results [21], [22].
Recently, diffusion models such as DiffGesture [23] have
demonstrated effectiveness in linking speech and gestures
while maintaining temporal consistency, enabling the gener-
ation of high-quality co-speech gestures. However, while co-
speech gesture generation emphasizes fluency and style, it still
struggles with fine-grained accuracy, particularly in generating
subtle hand gestures and precise lip shapes. This limitation
renders existing co-speech generation methods less suitable for
CS generation, where precise synchronization of hand gestures
and lip movements is critical for effective communication.

In the literature, several methods have been proposed for
Sign Language (SL) generation: 1) The Neural Machine Trans-
lation approach in [24] treats SL generation as a translation
task, utilizing neural models to process SL text. 2) The Motion
Graph method in [24] constructs a directed graph from motion
capture data to generate SL gestures. 3) Conditional genera-
tion methods, such as GANs and Variational Autoencoders
(VAEs), have also been applied to SL gesture synthesis. 4)
Transformer-based models, as discussed in [25], have shown
promise in this domain. Despite these advancements in SL
gesture generation, applying these methods to CS still has
some limitations. Firstly, CS generation requires fine-grained
hand and lip gesture generation, especially in their position
and shape, which aligns with specific phonemes. In contrast,
SL gesture generation [26] is abstract and not sensitive to
the detailed position of the hand. Secondly, CS requires
synchronization between hand gestures and lip movements
to enhance comprehension, which is a property not present
in SL. The SL generation task [27] does not emphasize lip
synchronization with spoken speech rhythm and lacks the
specific synchrony characteristics observed in CS [14], [28].
Directly employing the current methodologies designed for SL
generation does not yield satisfactory results in our CS gesture
generation task.

C. General Human Motion Video Generation

In recent developments within the field of 2D human gesture
video generation, diffusion models [29] have emerged as a
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Fig. 4. The overall framework of the proposed AnyoneCue framework, where (1), (2), (3) represent gloss-based diffusion pose generation module, audio-driven
rhythm module, and pose-refined video diffusion module, respectively.

leading approach, primarily applied in two key areas: text-
driven general body motion gesture generation (e.g., human
walking, jumping and kicking) [30], [31] and pose-driven
motion video generation [32], [33]. In this task, fine-grained
pose generation is a crucial problem, which refers to the
controllable generation of face (especially the lips), hands
(especially the fingers), and body movement details. As far
as we know, it remains a challenging area so far, particularly
for CS generation which does not have enough data. Existing
research has made some attempts. For instance, talking head
methods [34], [35] have achieved lip-syncing with speech but
are limited in generating body details. For fine-grained hand
generation, [36], [37] have explored hand refinement, but these
efforts are limited to the image level. Consequentially, how to
achieve fine-grained video generation for human body remains
an open research problem.

III. PROPOSED METHOD

In this section, we introduce the proposed AnyoneCue
framework, which consists of three main components: a Gloss-
based diffusion Pose Generation Module (GlossDiff), an Au-
dio Speech-driven Rhythmic Module (ARM) to capture the
rhythmic dynamics of CS gestures, and a Fine-grained Pose-
Refined Video Diffusion Model (PRV-DM), which contains
a Multi-faceted Pose-Refined Module (MFPR). The overall
architecture is illustrated in Fig. 4.

A. Problem Formulation

Automatic CS video generation aims to generate the cor-
responding pose sequence of CS gestures, denoted as M∗,
which includes lip movements, hand shapes (fingers), and
hand positions, given an input audio speech signal A and the
associated text T .

The combined features of A, T , and the generated rhythmic
information are fed into the CS gesture generator. The final CS
gesture poses (M∗) are obtained by minimizing the following
objective function:

K∑
i=1

||M∗
i −Mi||, (1)

where K denotes the total number of frames in the current
CS video. The ground truth CS gesture keypoints Mi in the
i-th frame of the CS video are extracted using the Expose
method [38]. Here, M∗

i = M̂i + M̃i, where M̂ = GS(T,A)
contains all generated semantic gesture keypoints. Specifically
M̂ = {M̂i}Ki=1, where K is the number of frames, and M̂i

contains all the landmarks of human pose in the i-th frame. GS
is the semantic gesture generator. Additionally, M̃ = GR(A)
corresponds to the rhythmic information derived from the input
audio speech, with GR serving as the rhythm generator.

The generated CS pose sequences M∗ = {M∗
i }Ki=1, are then

used to synthesize the final CS video, where K is the number
of frames, and M∗

i contains all the landmarks of human pose
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Fig. 5. The illustration of the Cued Speech (CS) gloss generation process is presented. (a) shows the encoding rule for Mandarin Chinese Cued Speech
(figure from [3]), where vowels are represented by five unique hand positions and consonants by eight distinct finger shapes. (b) showcases the pipeline of
our proposed instructional gloss, designed to directly connect the source text to the corresponding CS movements.

in the i-th frame. We employ a deep generative model GV that
takes the pose sequence M∗ and reference images Iref as
input and produces realistic video V .

V = GV(Iref ,M
∗), (2)

where GV is trained to map from pose representations to
photorealistic video frames while preserving temporal consis-
tency and fine-grained details. More details about GS , GR, GV
are discussed in the following subsection III-B, III-C, III-D
respectively.

B. GlossDiff: Gloss-based diffusion Pose Generation Module

In this section, we introduce a novel Gloss-based diffusion
Pose Generation Module (GlossDiff) designed to simultane-
ously generate fine-grained hand positions, hand shape move-
ments, and lip shapes in CS. This module comprises three main
components: the Knowledge Infusion Module, the Gloss-based
Motion CLIP Fine-tuning, and the Gloss-Prompted Diffusion
Model (named GlossNet).

1) Knowledge Infusion Module: The main goal of the
knowledge infusion module is to convert language text T (such
as speech transcription) into gloss (i.e., direct text instructions,
see Fig. 5(b)), which phonetically detail the corresponding
fine-grained CS motions. To accomplish this, we utilize the
LLM, specifically ChatGPT-4 [39], applying a prompt engi-
neering strategy to incorporate the encoding rules of Chinese
CS [5] into our framework through the following:

g = LLM(T, P ), (3)

where P represents our specially crafted prompt, derived from
CS domain knowledge (i.e., established transformation rules
of CS [5]), and T is the input text. This approach ultimately
enables the transformation of text that is indirectly linked to
the semantics of CS video into a gloss that is directly aligned
with the content of the CS video.

2) Gloss-based Motion CLIP Fine-tuning: MotionCLIP
[40] is a large-scale multimodal model designed specifically
for generating a variety of human motion gestures. To achieve
an accurate feature embedding for CS gloss, we utilize Mo-
tionCLIP as a pre-trained foundation model and fine-tune it

with the generated CS gloss (refer to Subsection III-B1) along
with the associated CS gestures.

In the fine-tuning phase, we employ a CLIP-style contrastive
learning approach [41] to adjust the encoders using CS data.
Consider a batch of pairs consisting of CS gesture motion and
gloss embeddings, represented as B = {(zmi , zgi )}

B
i=1, where

B represents the batch size. The latent features zmi , zgi ∈ RC ,
where C is the dimension of the latent space. Em and Eg are
the encoders for the motion sequence and gloss, respectively.
The latent features are expressed as zm = Em(M), zg =
Eg(g). The training aims to enhance the similarity between the
paired zmi and zgi in the batch while reducing the similarity
of mismatched pairs

(
zmi , zgj

)
i̸=j

. A symmetric cross entropy
(CE) loss LCE is optimized based on these similarity scores.
The formal expression for the loss is:

LCLIP = EB∼D[LCE (y (zmi ) , pm (zmi ))

+LCE

(
y
(
zgj
)
, pg

(
zgj
))]

,
(4)

where y is a one-hot encoding that indicates the true rela-
tionship between gestures zmi and gloss zgj within the training
batch B. If they form a pair, y = 1, otherwise, y = 0. The
probability p is defined as follows:

pm (zmi ) =
exp (zmi · zgi /η)∑B
j=1 exp

(
zmi · zgj /η

) , (5)

where η is the softmax temperature, and pg
(
zgj
)

is computed
in a similar manner.

3) GlossNet: Gloss-Prompted Diffusion Model: To gen-
erate CS gesture pose sequences, we introduce GlossNet, a
Gloss-Prompted Diffusion Model. Specifically, the semantic
hand gesture pose generator GS is constructed based on the
latent diffusion model [42], which performs diffusion and
denoising operations within a pre-trained latent space. The
model is trained using the standard noise estimation loss [29],
which is defined as follows:

Lnoise = ||ϵ− ϵθ (Zn, n, g, A) ||22, (6)

where Zn denotes the latent CS gesture at each time step n.
Here, A represents the Mel-spectrogram of audio speech, and
g is the generated gloss. The term ϵ is the actual noise, which
share the same dimension with the latent feature. ϵθ is the
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noise predicted by the latent diffusion model, with θ being its
parameters.

To incorporate gloss prompt information into the diffu-
sion network, we utilize an adaptive instance normalization
(AdaIN) layer [43]. Specifically, we use the fine-tuned Motion-
CLIP gloss encoder Eg to transform the gloss prompt into a
gloss embedding zg . A Multilayer Perceptron (MLP) network
is then trained to map this gloss embedding zg to parameters
that adjust the per-channel mean and variance of the AdaIN
layer.

For training the GlossNet, we apply classifier-free guidance
as outlined in [44]. During training, we allow GS to learn
both conditional and unconditional semantic distributions by
randomly setting gloss g to ∅, where ∅ denotes the absence of
any gloss condition, effectively deactivating the AdaIN layer
during the training process with a probability p, which is set
to 10% [30]. During inference, the expected noise is:

ϵ∗n = pϵθ (Zn, n, g, A) + (1− p)ϵθ (Zn, n,∅, A) . (7)

Once the predicted noise ϵ∗n is obtained, the model proceeds
in a reverse step-by-step manner over N time steps, updating
a latent gesture sequence Zn at each time step n. It starts
by generating a sequence of latent codes ZN ∼ N (0, I)
and then calculates a series of denoised sequences Zn by
iteratively removing the estimated noise ϵ∗n from Zn for
n = N − 1, . . . , 0. The final generated CS gesture latent
embedding Z0 is obtained through N reverse diffusion steps.
This Z0 is input into a Transformer-based decoder [45] to
produce semantic CS gesture motion M̂ .

4) Training of the GlossDiff: We utilize a semantic loss
function to ensure the semantic accuracy of the final generated
CS pose sequences. Specifically,

Lsemantic = 1− cos (Z0, Z
∗
0 ) . (8)

Here, cos(·, ·) signifies the cosine distance, whereas Z0 and
Z∗
0 refer to the final generated CS gesture latent embedding

and the actual CS pose gesture motions, respectively.
In line with the conventional training approach for denoising

diffusion models, we aim to minimize the following loss
function:

Ltotal = αLnoise + βLsemantic + γLrhythm, (9)

where α represents the weight assigned to Lnoise (Equation
(6)), β denotes the weight for Lsemantic (Equation (8)), and γ
indicates the weight for Lrhythm (Equation (10)).

C. Audio Speech-driven Rhythm Module

In generating CS gestures, achieving precise hand gesture
generation is not the only concern; the natural rhythm of
gesture movements is also important. We believe that the audio
speech signal encompasses not only semantic content but also
rhythmic dynamics inherent to CS, which are essential for
ensuring visual and auditory synchronization.

1) Rhythmic CS Pose Modeling: To tackle this issue, we
present an innovative Audio Speech-driven Rhythmic Module
(ARM) that is crafted to capture the rhythmic dynamics of CS
gestures. This module makes use of three convolutional layers
as a rhythmic dynamics generator GR, which further aligns
the motion dynamics with the CS rhythm.

Prior studies (e.g., WavLM and AudioLDM) [46], [47] have
demonstrated that audio features extracted using large pre-
trained models possess a more robust expressive capability
compared to Mel-Frequency Cepstral Coefficients (MFCC)
features, thereby minimizing information loss. Without loss
of generality, we employ the encoder from WavLM, denoted
as EA, to derive audio features, thereby preserving richer and
higher-dimensional rhythmic information.

To address the lip-hand synchronization challenge [14] in
CS, we redefine the task as determining the motion magni-
tude for each frame in successive motion sequences. Unlike
approaches that strive for perfect alignment between generated
gestures and speech, our method implicitly learns to produce
asynchronous gestures corresponding to input speech. Instead
of directly manipulating the gestures of each frame, we con-
centrate on regulating the overall rhythm of a motion sequence.

The loss function for ARM is as follows:

Lrhythm = ||M̃ −
(
M − M̄

)
||, (10)

where M̄ means the average pose motion within the set
of generated CS motions M . The discrepancy between M
and M̄ measures the magnitude of hand position and finger
movement. The goal of Lrhythm is to ensure that the generated
M̃ = GR(EA(A)) maintains a natural offset relative to the
mean gesture. Here, EA functions as the encoder of WavLM.
This offset is crucial for creating motion dynamics that are
natural and non-mechanical, without changing the semantics of
the CS pose. We validate the effectiveness concerning rhythm
quality and naturalness through quantitative results in Sec.
V-A, along with qualitative results in Sec. V-B.

2) Novel Quantitative Rhythmic Metrics: In this work, we
treat rhythm as a critical paralinguistic feature for enhancing
the effectiveness of CS communication for the first time. To
capture the distinctive asynchronous dynamics between lip and
hand movements in CS situations, we introduce an innovative
metric, the Gesture Audio Difference (GAD), to assess the
rhythmic synchronization of generated gestures.

This metric is defined as follows:

GAD(M,A) =
1

L

L∑
i=1

1[||UM
i −UA

i ||1 < τ ], (11)

where M and A denote the CS gesture pose and Mel-
spectrogram of audio speech, respectively. L represents the
number of annotated temporal segments, which are identical
for both speech and gesture. The variable U i refers to the
midpoint of a segment, indicating a specific moment when
a gesture or speech occurs. The function 1 is an indicator
function, assigning a value of one to elements within the subset
(meeting the condition||UM

i −UA
i ||1 < τ ) and zero to all other

elements.
Acknowledging the asynchrony between audio speech and

CS hand movements, we introduce a threshold τ to ensure their
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alignment. This threshold is empirically established based on
a statistical analysis of the hand preceding time [48], which
refers to the time difference between the hand reaching its
target position and the corresponding phoneme being produced
by the lips in CS. This time lag occurs because hand and
lip movements in CS are not synchronized, with the hand
typically moving in advance to provide visual cues before the
lips produce the sound.

D. PRV-DM: Pose-Refined Video Diffusion Module
Based on the proposed GlossDiff, we obtain the fine-

grained CS pose sequence. To generate personalized CS 2D
video, we further propose a Pose-Refined Video Diffusion
Module (PRV-DM), which is built on a temporal-aware 3D
U-Net structure that incorporates temporal attention layers for
modeling frame dependencies. Given a reference image Iref
and target pose sequence M1:K with frame length K, the
video diffusion module GV generates temporally consistent
videos while preserving detailed appearance features.

The framework employs a dedicated appearance encoder
Fa to extract dense appearance features ya from the reference
image:

ya = Fa(zn|Iref , n), (12)

where zn is the noise latent, and Iref is the reference image
for each denoising step n. These features are injected into
the attention blocks through a spatial attention mechanism.
The appearance encoder adopts a symmetrical U-Net structure
without temporal layers. Each corresponding layer integrates
features through spatial attention, enabling comprehensive
learning of reference image relationships in a consistent fea-
ture space.

A lightweight pose motion guidance network Fm processes
pose conditions and obtain the pose motion feature y1:Km :

y1:Km = Fm(zn|M,n). (13)

The network consists of 4 convolution layers with 4×4 kernels
and 2×2 strides, with channel progression from 16 to 128. The
final projection layer incorporates a zero convolution, and the
network is initialized using RandomNormal initialization. The
output resolution is aligned with the noise latent space.

The temporal layer processes feature maps x ∈
Rb×k×h×w×c by reshaping it to x ∈ R(b×h×w)×k×c, perform-
ing self-attention along temporal dimension K, and integrating
via the residual connection. The full denoising process for a
sequence with length K is formulated as follows:

ϵ1:Kθ (z1:Kn , n, Iref ,M
1:K) = FT (z

1:K
n |n, ya, y1:Km ). (14)

For long video generation, the sequence z1:K is divided into
overlapping segments for generation.

The training consists of two stages. In the first stage,
temporal layers are temporarily removed, and the model is
trained with single-frame noise input. The appearance encoder
and pose guidance network are jointly optimized by:

L1 = Ez,n,Iref ,M,ϵ∼N (0,1)[||ϵ− ϵθ||22]. (15)

The second stage introduces temporal layers, training on
video clips with the loss:

L2 = Ez1:K ,n,Iref ,M1:K ,ϵ1:K∼N (0,1)[||ϵ1:K − ϵ1:Kθ ||22]. (16)

E. Multi-faceted Pose-Refined Processing

To solve the issues, such as inconsistent scale between
the generated pose and the given reference image, lip shape
ambiguity, and hand shape deformation, we design a multi-
faceted pose refinement module, which contains the following
three parts.

(a) FPA: Fine-grained Pose Alignment Module. Current
methods typically assume strict alignment between the refer-
ence image and driving pose sequence, significantly limiting
their applicability in CS gesture generation where precise
pose alignment is challenging. To tackle the challenges of CS
gesture generation where precise pose alignment is difficult,
we propose a novel fine-grained alignment approach that en-
hances generation quality without extra training. Our method
achieves fine-grained alignment accuracy while retaining both
motion dynamics and identity features. The FPA contains the
following two steps.
• Structure-guided Transformation: Given a generated

pose sequence M and a reference pose Mref, we first align
the skeletal structure to ensure proper proportions. For each
pair of connected keypoints (ik, jk) in frame k, we compute
the scaling factor:

sk =
∥pref,jk − pref,ik∥

∥pjk − pik∥
, (17)

where p and pref represent the keypoints from M and Mref,
respectively. Next, we scale the keypoints in M to match the
proportions of Mref:

pscaled,ik = sk · pik . (18)

To ensure proper alignment, we compute the offset ∆
between the center points of M and Mref:

∆ = pref,c − pc, (19)

where pref,c and pc are the center points of Mref and M ,
respectively.

Then we compute the rotation angle θ between M and Mref
and apply a rotation matrix R:

R =

[
cos θ − sin θ
sin θ cos θ

]
. (20)

Finally, the aligned keypoints are computed by applying the
scaling and offset:

palign,ik = R · pscaled,ik +∆. (21)

The aligned pose sequence Malign is obtained by applying
the above transformations to all keypoints in M , ensuring that
the skeletal structure matches the proportions and orientation
of Mref.

• Initial Frame Calibration: To enhance temporal coher-
ence, we introduce an initial frame calibration mechanism
that aligns the reference image with the first pose frame.
We leverage pose-guided synthesis to generate a calibrated
reference that matches the starting pose while retaining iden-
tity features. Our calibration process includes: 1) Extracting
structural features from the reference and initial pose, 2)
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Applying pose-guided transformation to align the reference
with the initial pose, and 3) Maintaining detailed features
during the first reference frame generation.

(b) Audio Speech-driven Lip Enhancement Module. To
achieve more accurate lip synchronization in CS gesture gen-
eration, we introduce an audio speech-driven lip enhancement
module. It leverages pre-trained audio processing models to
extract lip-related features from speech signals and generate
corresponding lip shapes.

Given an audio speech sequence A = {at}Tt=1, we employ
a pre-trained wav2vec model to extract audio features:

ft = Wav2vec(at). (22)

These features are then mapped to lip landmark sequences
through a lightweight network:

M t
lip = GA(ft), (23)

where GA(·) consists of two fully connected layers that
transform audio speech features into lip landmark coordinates.
The generated lip landmarks are subsequently integrated into
our pose alignment framework.

(c) Hand Refinement Module. To enhance the quality of
generated hand regions in CS gesture videos, we propose a
post-processing hand refinement approach. This refinement
process aims to rectify potential anatomical inconsistencies
while preserving the semantic meaning of CS gestures.

In the first stage, we employ a hand mesh reconstruction
model to extract structural hand information:

HM = R(V ⊙mh), (24)

where V is the generated CS video and mh represents the
hand region mask in the generated video frames, and R is a
pre-trained hand mesh reconstruction model [36] that provides
anatomically plausible hand mesh HM .

Then the depth map Dh is rendered from the reconstructed
mesh HM with a pretrained model GD:

Dh = GD(HM ). (25)

The second stage involves conditional inpainting guided by
the depth map. The refined hand region is generated by :

V ∗
h = GH(V,Dh,mh), (26)

where GH is a ControlNet-based inpainting model, mh is the
hand region mask, and V ∗

h is the refined result. To ensure
temporal consistency, we blend the refined region with the
original video to obtain the final refined CS video frame Vr:

Vr = mh ⊙ V ∗
h + (1−mh)⊙ V. (27)

IV. EXPERIMENTAL SETUP

A. Large-scale Mandarin Chinese CS dataset

Previously, only two publicly accessible CS datasets existed:
one in French3 [50], comprising recordings of a single cuer
delivering 238 sentences, and another in British English4 [51],

3https://zenodo.org/record/5554849\#.ZBBCvOxBx8Y
4https://zenodo.org/record/3464212\#.ZBBAJuxBx8Y

similarly featuring a single cuer reciting 97 sentences. To
address the lack of Chinese CS data, we have recorded and
constructed, for the first time, a large-scale Mandarin Chinese
CS dataset, named MCCS-2024, which includes contributions
from seven CS cuers.

The dataset was built by first selecting 1000 text sentences
based on the following principles: (1) The sentences cover
common daily scenarios, including colloquial dialogues, for-
mal expressions, and written language. (2) The materials aim
to encompass all possible syllable combinations. Overall, our
text collection spans 23 main topics, 72 subtopics, and includes
the 399 most frequently used Mandarin syllables. The dataset
consists of 1000 sentences, totaling 10,482 words, with an
average of 10.5 words per sentence. The shortest sentence
contains 4 words, while the longest comprises 25 words.
Subsequently, we recorded CS videos from each of the seven
cuers performing these 1000 sentences, resulting in a total of
7000 sentences.

All videos were captured using either a camera or a mobile
phone in landscape mode. The seven cuers underwent sys-
tematic training to ensure accurate and fluent performance of
Mandarin Chinese CS. It is important to note that the dataset
was collected with the explicit consent of all participants and
is suitable for open-source distribution.

B. Experimental Setting

During the training stage, we first pre-train the motion clip
and subsequently adopt an end-to-end pipeline to train the
latent diffusion model. The experiments are conducted using
PyTorch, leveraging four A6000 GPU cards for model training.
In the inference phase, the latent diffusion model is utilized
to generate CS gestures. The dataset is randomly divided into
training and test sets in a 4 : 1 ratio. The diffusion process
consists of 1000 steps, with a training batch size of 128. The
weights for the loss components are set to α = 1, β = 0.2
and γ = 0.1.

C. Evaluation Metrics

• Evaluation for the Generated CS Pose. Traditional
evaluation metrics for generated CS pose gestures include
three categories: Percentage of Correct Keypoint (PCK) [52],
Fréchet Gesture Distance (FGD) [22], Mean Absolute Joint Er-
rors (MAJE) [22], and Mean Acceleration Difference (MAD)
[22]. Additionally, to further assess the unique asynchronous
dynamics between lip and hand movements in CS, we employ
a novel metric, GAD, as detailed in Sec. III-C2, to evaluate
the rhythmic synchronization of the generated gestures.
• Evaluation for the Generated CS Video. For a compre-

hensive evaluation of our method’s effectiveness in CS video
generation, we conducted extensive comparisons across mul-
tiple established metrics including Peak Signal-to-Noise Ratio
(PSNR) [53], Structural Similarity Index Measure (SSIM)
[54], L1, Learned Perceptual Image Patch Similarity (LPIPS)
[55], Fréchet Inception Distance for Video (FID-VID) [56] and
Fréchet Video Distance (FVD) [57]. These metrics collectively
assess different aspects of video quality - from image-level
quality (PSNR, SSIM, L1) to perceptual quality (LPIPS)
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Methods PCK (%)↑ FGD↓ MAJE (mm)↓ MAD (mm/s2)↓ GAD (%)↑

Speech2Gesture [21] 36.84 19.25 61.26 3.97 66.8
GTC [22] 41.23 6.73 55.43 2.54 66.7
HA2G [49] 43.51 4.07 46.78 2.29 67.2
DiffGesture [23] 47.58 3.50 48.52 2.12 69.9

Our GlossDiff (w/o Gloss-prompt) 51.12 4.72 45.68 1.28 75.6
Our GlossDiff (w/o WavLM) 52.97 4.54 42.31 0.71 78.3
Our GlossDiff (w/o Gloss-CLIP) 53.41 4.31 43.52 0.65 79.1
Our GlossDiff 54.23 3.92 39.28 0.52 79.4

TABLE I
THE EXPERIMENTAL RESULTS ON THE MCCS-2024 DATASET IN COMPARISON TO STATE-OF-THE-ART (SOTA) METHODS. THE LABEL

”GLOSS-PROMPT” SIGNIFIES THE INCLUSION OF A GLOSS KNOWLEDGE INFUSION MODULE. ”WAVLM” INDICATES THAT MEL-FREQUENCY CEPSTRAL
COEFFICIENT (MFCC) FEATURES WERE REPLACED BY REPRESENTATIONS EXTRACTED FROM THE LARGE-SCALE PRE-TRAINED SPEECH MODEL,

WAVLM. ”GLOSS-CLIP” REPRESENTS THE UTILIZATION OF GLOSS-BASED MOTION CLIP FINE-TUNING.

Method PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID-VID ↓ FVD ↓

Disco 16.98 0.732 5.78E-04 0.289 66.28 529.60
MagicAnimate 17.53 0.763 5.41E-04 0.271 52.57 417.09
Moore-AnimateAnyone 17.32 0.774 5.13E-04 0.285 47.16 401.80
Unianimate 17.95 0.791 4.86E-04 0.257 31.72 361.35
MimicMotion 17.87 0.759 4.61E-04 0.243 25.57 257.80
Ours 18.48 0.806 3.74E-04 0.216 13.77 208.92

TABLE II
QUANTITATIVE COMPARISONS WITH SOTAS ON MCCS-2024 FOR VIDEO GENERATION.

and video-level fidelity (FID-VID, FVD). By evaluating our
approach against SOTA methods using this diverse set of
metrics, we can thoroughly demonstrate its capabilities in
generating high-quality CS motion video while maintaining
both personalized consistency and fine-grained motion.

D. Compared Methods

Firstly, to evaluate the generated CS pose quality, we com-
pare our approach with four recent gesture synthesis methods,
i.e., Speech2Gesture [21], Gestures from Trimodal Context
(GTC) [22], HA2G [58], and DiffGesture [23].

Secondly, to evaluate the generated CS video quality, we
compared our proposed AnyoneCue with several SOTA meth-
ods, including Disco [59], MagicAnimate [60], Animate Any-
one [32], and UniAnimate [61]. The compared models were
fine-tuned on MCCS-2024 dataset. Extensive experiments on
both public human animation datasets and our proposed CS
dataset demonstrate that AnyoneCue outperforms these com-
peting methods in terms of personalized consistency and fine-
grained details.

V. RESULTS AND ANALYSIS

A. Quantitative Results and Analysis

In this section, we show the comparisons with SOTA for
CS pose generation and CS video generation, respectively.

1) Comparison with SOTA for CS Pose Generation: We
consider DiffGesture as the SOTA method among these ap-
proaches, as it achieves the best performance on the TED
Gesture datasets [62].

Table I presents a comprehensive comparison between our
method and previous approaches on the MCCS-2024 dataset.
Our proposed method, GlossDiff, achieves the best results in
PCK, MAJE, MAD, and GAD metrics, with most metrics
showing a significant improvement over the reference systems.

These results highlight the superior quality of fine-grained
gesture generated by our system. The only exception is a
slightly lower FGD score than the SOTA method, although
it still outperforms all other reference methods. Notably, our
method’s PCK values are substantially higher than those of
other methods, demonstrating its effectiveness in fine-grained
generation. Furthermore, our method excels in rhythm perfor-
mance, achieving the highest GAD values. This superiority
of the GAD metrics underscores our method’s ability to
effectively capture the rhythmic dynamics in CS gestures.

2) Comparison with SOTA for CS Video Generation:
A comprehensive quantitative evaluation was conducted to
compare our method with several SOTA approaches on the
MCCS-2024 dataset, as shown in Table II. Our method con-
sistently outperforms previous approaches in multiple met-
rics, achieving higher scores in PSNR (18.48), SSIM (0.806)
and L1 (3.74E-04). Specifically, compared to the strongest
baseline (i.e., Unianimate), our method shows substantial
improvements of 0.53dB in PSNR and 0.015 in SSIM. The
significant reduction in LPIPS (0.216), FID-VID (13.77), and
FVD (208.92) metrics further demonstrates our method’s ca-
pability to generate high-quality videos with better perceptual
similarity and temporal consistency. Notably, our approach
achieves a 19% improvement in FVD compared to Mim-
icMotion (257.80), indicating enhanced temporal coherence.
The consistent superior performance across both spatial qual-
ity metrics (PSNR, SSIM) and temporal metrics (FID-VID,
FVD) validates the effectiveness of our proposed method in
generating high-fidelity videos while maintaining temporal
consistency. These comprehensive results demonstrate that our
method can better capture the dynamic nature of video content
while preserving frame-level quality, representing a significant
advancement in video generation.

3) Ablation Study: We conduct an ablation study for the
three modules, as shown in Table I. The term “Gloss-prompt”
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represents the integration of the Gloss Knowledge Infusion
Module. “WavLM” refers to the use of features extracted
from the pre-trained large-scale speech model WavLM, replac-
ing conventional MFCC features. “Gloss-CLIP” indicates the
incorporation of Gloss-based Motion CLIP Fine-tuning. The
results reveal that removing any module leads to a decrease in
performance metrics, underscoring the effectiveness of each
module within our framework. Specifically, the absence of
the Gloss-prompt and Gloss-CLIP modules reduces PCK by
3.11% and 0.82%, respectively, emphasizing their crucial role
in fine-grained generation.

Fig. 6. The visualization of fine- grained Gloss and the corresponding
generated gesture.

B. Qualitative Results and Analysis

1) Fine-grained Gesture Generation with Gloss Prompts:
Fig. 6 illustrates fine-grained hand gestures generated with
gloss prompts, where each row depicts the detailed gloss of
different body parts along with their corresponding gesture
sequences. Arrows are used to indicate lip movement trends,
red circles highlight finger shape transformations, and red
stars denote hand position shifts, including their movement
directions. The first row demonstrates the expansion of the
lips’ contour in response to the gloss input. The second row
focuses on detailed shape changes synchronized with detailed
finger gloss. In the third row, subtle hand position shifts are
observed, marked by red stars moving from near the mouth
to the chin area, showcasing our method’s capability to utilize
detailed gloss for guiding CS gesture generation.

2) Distribution of Fine-grained Gesture Features: We em-
ployed t-SNE [63] for dimensionality reduction to visualize
the generated CS gestures in the feature space. Frames were
uniformly sampled from the generated CS sequences, and hand
gesture features corresponding to the text were extracted. As
illustrated in Fig. 5, the MCCS-2024 dataset utilizes 8 distinct
finger shapes to represent the 24 consonants of the Chinese
language, along with 5 hand positions to denote the 16 vowels.
In the left portion of Fig. 7, eight distinct clusters are observed,
with each cluster corresponding to a specific set of finger
shapes (where each color represents a different consonant
group). Clusters that are closer in distance exhibit similar
finger shapes, such as shape 8 and shape 6, as well as shape

2 and shape 7. This visualization confirms the effectiveness
of our method in capturing the fine-grained semantics of CS
hand and finger shapes. On the right side of Fig. 7, differences
in features among hand positions are evident, but the clusters
exhibit more overlap, indicating that they are less distinctly
separated at the feature level compared with finger shapes.

Fig. 7. The t-SNE clustering results are visualized to illustrate the separation
of eight consonant groups (based on finger shape) and five vowel groups
(based on hand position). Each group is represented by a distinct color.

Fig. 8. The visualization result of the generated gestures compared to the
SOTA method.

3) Comparative Analysis of CS Gesture Poses with SOTA:
Fig. 8 presents a visual comparison between our method
and the SOTA method (i.e., DiffGesture). This comparison
includes the corresponding audio speech, text, and the ground
truth video frames for the gestures. Phonemes are highlighted
in red, while red stars and circles are used to mark hand
position and finger shapes, respectively.

Our method demonstrates a notable improvement in gesture
accuracy, especially in fine-grained details. For instance, in

Fig. 9. Visualization result of generated hand in CS videos. It shows that the
hand refinement module can effectively improve the hand details and accuracy
of hand shapes.
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Fig. 10. Visualization result of generated CS video frames. It shows that the lip enhancement module can effectively improve the synchrony of lip shapes
with the corresponding audio speech.

the first column, the index finger shape generated by our
method is more precise compared to the SOTA method. In the
second column, our method correctly positions the hand beside
the face, whereas the SOTA method places it near the eye.
The fourth column highlights our method’s superior precision
in thumb positioning and overall gesture alignment with the
ground truth, reflecting stronger adherence to CS rules and
enhanced accuracy in fine-grained details.

4) Visualization of Generated CS Videos: In Fig. 9, we
present a visualization comparison between the baseline and
hand-refined results across six paired examples. In the first
sample, the refined version shows an improved definition of
finger joints and more natural curvature in the open palm
gesture, with clearer separation between fingers compared
to the baseline’s slightly rigid representation. The second
frame demonstrates enhanced articulation of the hand position,
where the refined model better captures the natural flex of
fingers in a similar open-hand pose. In the third example,
the peace sign gesture exhibits more precise finger alignment
and realistic joint positioning in the refined version, correcting
the minor distortions visible in the baseline result. The fourth
frame shows a significant improvement in capturing the raised
hand position, with more accurate finger spacing and natural
hand curvature. In the fifth and sixth examples, the refined
model achieves a better definition of finger proportions and
realistic hand contours, particularly evident in the angular
hand positions. These consistent improvements across all sam-
ples demonstrate that our hand refinement module effectively
enhances the anatomical accuracy and natural appearance of
hand gestures, successfully addressing the limitations in hand
detail generation observed in the baseline model.

Fig. 10 demonstrates the effectiveness of our lip enhance-
ment module in improving lip synchronization with audio
speech through a comparative analysis using a Chinese phrase
“Ni Jyao Shen Me Myeng Zi” in Chinese (“What’s your
name?” in English). The visualization presents two rows of
video frames corresponding to models without and with lip

refinement alongside the audio waveform and text representa-
tion of each syllable. The refined version exhibits significant
improvements in several critical aspects of lip synchronization.
Notably, the lip shapes show enhanced precision in matching
specific phonemes, particularly evident in the transitions be-
tween syllables like “Ni” and “Jyao”. The temporal alignment
between lip movements and audio waveform peaks demon-
strates superior coherence in the refined model, while the
articulation detail shows an improved definition of lip con-
tours and mouth shapes during various vowel and consonant
combinations. Furthermore, the refined version maintains more
consistent and natural lip movements throughout the sequence,
effectively eliminating the subtle misalignments observed in
the baseline version. These improvements collectively vali-
date that our lip enhancement module successfully achieves
more realistic and accurate lip-sync performance, effectively
synchronizing visual lip movements with the corresponding
audio speech.

Fig. 11. User study results of the ground truth (GT), current SOTA
(DiffGesture) and our method (GlossDiff).

C. User Study

1) User Study on CS Pose Generation: We conducted a user
study to assess the quality of CS gestures generated by our
method compared to the SOTA method and the ground truth.
The study included 10 groups of videos, each containing a
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ground truth CS gesture video, videos generated by the current
SOTA method (DiffGesture), and videos generated by our
method (GlossDiff). All videos were randomly shuffled. Ten
participants trained in CS were asked to evaluate CS gesture
videos based on three criteria: accuracy, rhythm quality, and
naturalness, with each criterion scored on a scale from 0 to
10 (higher scores indicate better performance). The average
scores and confidence intervals were calculated for each case.

As illustrated in Fig. 11, our method outperformed the
current SOTA DiffGesture across all three metrics, achieving
results closer to the ground truth. This highlights our method’s
capability to generate more accurate and natural CS gestures,
particularly in rhythm quality, which is attributed to the pro-
posed ARM. Our approach significantly surpasses DiffGesture
in accuracy, demonstrating its effectiveness in fine-grained
gesture generation.

Fig. 12. User study results of the generated videos of our methods and SOTA.

2) User Study on CS Video Generation: To comprehen-
sively evaluate the quality of our generated CS videos, we
conducted a second user study comparing our method against
UniAnimate (current SOTA), AnimateAnyone, MusePose and
ablated versions of our model. We prepared 6 groups of
videos, containing the same content generated by UniAnimate,
AnimateAnyone, MusePose and our full method (GlossDiff
+ FPA-Diff) along with our ablated versions: without lip en-
hancement. The study involved 13 participants who rated each
video on five aspects using a scale of 1-10: Consistency, hand
integrity (completeness and clarity of finger shapes), human-
likeness and audio speech synchronization (alignment between
lip movements and speech), and overall quality (visual quality
and consistency).

The user study results summarized in Fig. 12, clearly
demonstrate that our full model (incorporating both GlossD-
iff and FPA-Diff) outperforms all other methods across all
evaluation metrics. In particular, we observe a substantial
advantage in hand integrity (Hand Quality) and lip-audio
synchronization (Lip Audio Sync), which are notably challeng-
ing aspects of character-driven video generation. Removing
the lip enhancement module led to a noticeable drop in
Lip Audio Sync scores, confirming the effectiveness of our
approach. The variance analysis further shows that our model
provides more stable and consistent results, delivering high-
quality, realistic outputs. These results highlight our method’s

significant advantage in generating consistent and fine-grained
CS videos.

VI. DISCUSSION AND CONCLUSION

A. Limitation and Discussion

The proposed AnyoneCue excels in generating fine-grained
and personalized CS videos. It was reported that hand gestures
and lip-reading are sufficient to accurately convey semantic
information [4], [5]. Nevertheless, from a human-centric per-
spective, we believe that the generation of subtle facial ex-
pressions remains an essential component. Future work could
integrate emotional features into the framework, potentially
leveraging affective computing techniques to enhance the ex-
pressiveness of the generated videos. This would further bridge
the gap between synthetic and natural human communication,
making the system more expressive for users.

Besides, while our methodology is theoretically applicable
to CS across different languages, the current scarcity of open-
source CS datasets for English and French (i.e., only 238
French CS videos [48] and 97 English CS videos publicly
available [51]) severely limits the effectiveness of training
GlossDiff and diffusion models proposed in this work. This
data insufficiency may lead to suboptimal performance, in-
cluding imprecise gloss prompts, unrealistic hand articula-
tions, or inconsistent lip synchronization. To address these
limitations and fully validate the cross-linguistic robustness
of our approach, expanding data collection efforts to include
CS datasets with more diverse languages represents a critical
future research direction.

B. Conclusion

In this work, the proposed AnyoneCue framework repre-
sents a significant advancement in the automated generation
of CS videos based on audio speech and text, offering a fine-
grained and personalized solution that adheres to specific CS
coding rules. By introducing the CS gloss as a novel action
parsing prompt, we effectively integrate additional linguistic
knowledge, bridging the semantic gap between gestures and
spoken language. The proposed Pose-Refined Video Diffusion
Model (PRV-DM) enhances the realism and precision of gen-
erated videos. Extensive experiments and user studies confirm
the efficacy of the AnyoneCue, establishing it as the first end-
to-end deep learning approach for CS video generation.
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